
www.soug.ch

S w i ss O r a c l e u s e r g r o u p

Sonderausgabe
Newsletter 5/2014

·	 OBIF

·	 DB licensing with VMware

·	 Delphix

·	 12c:
	 SQL Plan / 	Security Features

16� Tips&techniques

SOUG Newsletter 5/2014 – Sonderausgabe

7 significant changes to user access
control and privileges in Oracle 12.1

Miguel Anjo, Trivadis

1. �READ and READ ANY TABLE
privileges
Since long there was SELECT, INSERT, UPDATE and

DELETE privileges over tables. With Oracle 12.1.0.2 there is
the new READ and READ ANY TABLE privilege. The reason
is that with the SELECT privilege the user is able to do “LOCK
TABLE xxx IN EXCLUSIVE MODE” and “SELECT … FOR
UPDATE” and therefore locking table for other users.

For this reason, once you migrate to Oracle 12c, it might
be interesting to replace the SELECT privileges with READ
privileges, like on read only users or roles.

Care should be taken for some strict situations as the
READ privilege is not compliant with SQL92 security stan-
dard. Within this norm, an UPDATE or DELETE privilege re-
quires in addition the SELECT privilege in order to perform
DDL operations. Databases running Oracle Database Vault or
having the SQL92_SECURITY parameter set to TRUE (the
default is FALSE) should take particular attention.

2. �Attach roles to PL/SQL
program units – code based
access control

The feature mentioned in this paragraph could give a full
length article. Let’s try to make it simple. As of version 12.1 it
is possible to assign roles to PL/SQL code like functions,
procedures and packages. This gives the possibility of rais-
ing user privileges only during the run time of the program,
which is a big advantage for running code with invokers’
rights (authid current_user). Until Oracle 11g for achieving
the same there were two options: to grant the privileges di-
rectly to the user executing the procedure; or to run with de-
finer rights – which in turn could be much more powerful than
the necessary – and it would lose the caller environment in-
formation.

Let’s see an example of how useful is this new feature.
Imagine user BERN writes the following procedure to be
used by other users:

CREATE OR REPLACE PROCEDURE bern.proc_current_user
 AUTHID CURRENT_USER
 AS
 BEGIN
 INSERT INTO bern.table1 (user, date)
 VALUES (SYS_CONTEXT(’USERENV’, ’CURRENT_USER’));
 COMMIT;
 END;
/

GRANT EXECUTE ON bern.proc_current_user TO geneva;

CREATE ROLE r_insert;
GRANT INSERT ON bern.table1 TO r_insert;

Oracle 12c is bringing several new ways to ensure

the security of the databases we manage. This short

article describes seven changes related to users’ pri-

vileges and access that appeared in releases 12.1.0.1

and 12.1.0.2.

17Tips&techniques� 17

SOUG Newsletter 5/2014 – Sonderausgabe

Until Oracle 11g the user BERN needs to give the follow-
ing permissions:

GRANT r_insert TO geneva;

This means that as soon as user GENEVA logins, he has
full insert privileges on bern.table1 which is not secure in
most situations.

From Oracle 12c it is now possible to user BERN to pass
the privileges only to the procedure:

GRANT r_insert TO PROCEDURE bern.proc_current_user;

In order to help visualize the security context during a
session within the different options of the example one can
look at the following diagram.

Figure 1 – Security context changes during call to program
unit

It is visible that by using this new feature it is possible to
keep to a minimum the privileges assigned to a user in a per-
manent fashion while not losing on functionality.

Oracle’s idea behind this new possibility is to segregate
the roles between the person who develops the code, the one
who deploys the application and a privilege manager. It is the
privilege manager the responsible for creating the necessary
roles and granting them to the piece of code.

3. DELEGATE OPTION for roles
In order to assign existing roles to program units, a user

needs to have GRANT ANY ROLE privilege or the ADMIN op-
tion for role. Since 12.1.0.2 a new grant option exists – DEL-
EGATE – specifically for code based access control. As an
example, privilege manager user ZURICH creates a role and
grants to BERN which should then be able to grant it to a
program unit:

CREATE ROLE r_insert;
GRANT SELECT, UPDATE ON bern.table1 TO r_insert;
GRANT r_insert TO bern WITH DELEGATE OPTION;

Then BERN has now the right to delegate the role to a
program unit:

GRANT r_insert TO PROCEDURE bern.proc_current_user;

4. �Proxy only connect user
property

This yet undocumented feature allows to define applica-
tion schemas which can only be accessed through a proxy
user. It makes a very useful to assure that no user connects
directly to the application schema, even by knowing its pass-
word.

Here how it works:

SQL> CREATE USER app_user IDENTIFIED BY xyz;
User created.

SQL> GRANT CREATE SESSION TO app_user;
Grant succeeded.

SQL> ALTER USER app_user PROXY ONLY CONNECT;
User altered.

SQL> CREATE USER personal_user IDENTIFIED BY prx1;
User created.

SQL> ALTER USER app_user GRANT CONNECT THROUGH personal_user;
User altered.

SQL> CONNECT app_user/xyz;
ERROR:
ORA-28058: login is allowed only through a proxy

SQL> CONNECT personal_user[app_user]/prx1;
Connected.

SQL> SELECT user FROM dual;
USER

APP_USER

As usual, the use of undocumented features are not sup-
ported by Oracle. The syntax to rollback the change is:

SQL> ALTER USER app_user CANCEL PROXY ONLY CONNECT;

5. �RESOURCE role without
UNLIMITED TABLESPACE
privilege

While it is not recommended by Oracle to continue to use
the RESOURCE role (“this role might not be created auto-
matically by future releases of Oracle Database” as is written
in the documentation), there is an important change on Ora-
cle 12.1 – there is no more the UNLIMITED TABLESPACE sys-
tem privilege.

The consequence of this change is that, when you grant
the RESOURCE role, you need also to explicitly grant some
quota on a tablespace to the user.

Imagine the common (not recommended) way to create
users and a table:

SQL> CREATE USER bern IDENTIFIED BY xyz;
SQL> GRANT CONNECT, RESOURCE TO bern;

SQL> CONNECT bern/xyz
SQL> CREATE TABLE t1(c1 NUMBER);

Up to 11.2.0.4 you could do after as user ’BERN’:

SQL> INSERT INTO t1 VALUES (1);
1 row created.

18� Tips&techniques

SOUG Newsletter 5/2014 – Sonderausgabe

However from 12.1 this is what happens:

SQL> INSERT INTO t1 VALUES (1);
INSERT INTO t1 VALUES (1)

ERROR at line 1:
ORA-01950: no privileges on tablespace 'USERS'

6. �SELECT ANY DICTIONARY
protects critical SYS schema
tables

As DBA we know that hashed passwords can be found at
USER$ table. Some other tables like DEFAULT_PWD$,
ENC$, LINK$, USER_HISTORY$, CDB_LOCAL_AD-
MINAUTH$ and XS$VERIFIERS also contain very sensitive
information.

Starting with Oracle 12c, the SELECT ANY DICTIONARY
role does not include access to those views, limiting only to
SYS user the access to them.

Contact

Trivadis

Miguel Anjo
E-Mail:
miguel.anjo@trivadis.com

7. Last login information
Another small improvement that can greatly help to keep

an environment safe is the information about the last suc-
cessful login. It permits, without any other auditing, to know
when an account was last used. This allows to make the DBA
sure when he can delete an unused account and also can
make the user aware if someone else abused of his account.

This information is visible at the new LAST_LOGIN col-
umn of the DBA_USERS view.

Logging in to SQL*Plus the user can also see when the
last successful login happen:

$sqlplus bern/xyz

SQL*Plus: Release 12.1.0.1.0 Production on Thu Oct 30 12:38:25 2014
Copyright (c) 1982, 2013, Oracle. All rights reserved.
Last Successful login time: Thu Oct 30 2014 12:28:32 +01:00

�

gloBâle
Services

info@irix.ch www.irix.ch
Dornacherstrasse 192 CH – 4053 Basel T 061 367 93 33

The local

player for

global

solutions

Individuelle Softwarelösungen

Business Intelligence

Application Engineering

Seit 13 Jahren lokal, in Ihrer

weltweiten Nähe.

A nzeige

